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Temperature measurements of protonT1 (24.7 MHz), deuteron (deuterated hydroxyl group)T1 (55.2 MHz),
and protonT1F (B1 ) 9 G) spin-lattice relaxation times of 2,5-dinitrobenzoic acid have been performed. An
analysis of present experimental data together with previously published protonT1 (55.2 MHz) data has revealed
the following molecular motions: proton/deuteron transfer in the hydrogen bond and two-site hopping of the
whole dimer. It is shown that the proton-transfer dynamics are characterized by two correlation timesτov and
τtu, describing two fundamentally different motional processes, namely, thermally activated jumps over the
barrier and tunneling through the barrier. The temperature dependence of 1/τtu is the solution of Schro¨dinger’s
equation, which also yields the temperatureTtun, where begins the tunnel pathway for proton transfer. A new
equation for the spectral density function of complex motion consisting of the three motions is derived. The
third motion (two-site hopping of the whole dimer characterized byτlib correlation time) is responsible for a
protonT1F minimum in high temperatures, just below the melting point. Such a minimum is not reached by
T1 temperature dependencies. The minimum ofT1F assigned to the classical hopping of a hydrogen-bonded
proton occurs in the same low-temperature regime in which the flattening of the temperature dependencies
of T1 points to the dominance of incoherent tunneling. This experimental fact denies the known theories
predicting the intermediate temperature regime where a smooth transition between classical and quantum
tunneling dynamics is expected. The fit of the derived theoretical equations to the experimental dataT1F and
T1 is satisfactory. The correlation times obtained for deuterons indicate deuteron-transfer dynamics much
slower than proton-transfer dynamics. It is concluded that the classical proton transfer takes place over the
whole temperature regime, while the incoherent tunneling occurs below 46.5 (hydrogen) or 87.2 K (deuterium)
only.

1. Introduction

The purpose of this paper is to study of the proton-transfer
dynamics of 2,5-dinitrobenzoic acid (2,5-DNBA) in a wide
temperature regime by the NMR relaxation method. The
measurements of proton relaxation were performed at high [T1

(24.7 MHz)] and low [T1F (B1 ) 9 G)] resonance frequencies.
The deuteronT1 (55.2 MHz) relaxation for 2,5-DNBA, deuter-
ated in the mobile proton places (OD groups) was also measured.
The proton T1 (55.2 MHz) measurements were published
previously.1

Proton/deuteron transfer in the hydrogen bonds of carboxylic
acid dimers is a stochastic process, which modulates the
interaction Hamiltonian; therefore, it can be studied using NMR
relaxation methods. The assumption that the proton/deuteron
transfer is a single stochastic process (characterized by single
correlation time) with a smooth transition from the classical (at
high temperatures) to quantum dynamics (at low temperatures)
of proton transfer in the intermediate temperature regime has
been made in a number of papers.1-13

At variance to the above point of view, a new theoretical
description of the proton transfer as a complex motion has been
proposed in refs 14-16. The complex motion means that the
proton/deuteron transfer consists of two independent, constituent
motions, namely, classical hopping over the barrier and incoher-
ent tunneling through the barrier between sites corresponding
to potential energy minima (Figure 1). Since both motions take
place between the same potential minima, the geometries of
these motions are identical. These motions characterized by the
correlation timesτov (thermally activated jumps over the barrier,
classical motion) andτtu (incoherent tunneling) contribute to
separate correlation functions. As follows from the Schro¨dinger
equation, the tunnel jumps take place only when the potential
barrier is transparent for the de Broglie’a wave.16 The total
spectral density of complex motion is a Fourier transform of
the total autocorrelation function which is a product of the
separate correlation functions.17

The temperature dependence of the correlation time of
thermally activated jumps over the barrierτov follows the
Arrhenius law:

where
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and Eov ) EAB is the activation energy (barrier height minus
the energy of the ground vibrational state) of Avogadro’s
number of objects,T is the temperature in Kelvin,τ0

ov is the
pre-exponential factor, and∆ is the energy difference between
the potential minima (∆ ) EAB - EBA). The Arrhenius law does
not predict some final temperature for the application of eq 1,
but at the very low temperatures, the values ofτov are too long
to give the perceptible contribution of the corresponding spectral
density to the spin-lattice relaxation at the megahertz resonance
frequencies (T1). The best detection ofτov correlation time at
low temperatures is the spin-lattice relaxation rate measured
at a low resonance frequency in the kilohertz range, that is, (1/
T1F).

Skinner and Trommsdorff2 and Nagaoka et al.18 have derived
equations for the correlation time of incoherent tunneling. The
temperature limitations ofτtu are not expected from these
formulas.

The correlation time of incoherent tunneling following from
the Schro¨dinger equation has been proposed in refs 19-21:

where

The value ofB in eq 4 depends on the massm of the tunneling
particle and on the widthL of the potential barrier. The masses
of the tunneling proton and deuteron,m, are 1.67× 10-27 and
3.346 × 10-27 kg, respectively. The width of the potential
barrier, L, which can be estimated from the crystallographic
data22 is L ) 0.71 Å (the distance between protons from two
tautomeric forms O-H‚‚‚O T O‚‚‚H-O). Thus, the values of
B are then found to be 0.1006 (xJ)-1 for the proton and 0.142
(xJ)-1 for the deuteron.Cp is the molar specific heat.

The Schro¨dinger equation predicts that the tunnel jumps
through the potential barrier appear when the energy of the
particle is lower than the value of the potential barrier that the
particle has to pass over. The energy of the particle is the sum
of the thermal energy decreasing with decreasing temperature
and the vibrational energy; so for 1 mole of molecules,E )
CpT + EV0, whereCp is the molar heat capacity andEV0 is the
vibrational energy. The height of the barrierV is the activation
energy plus the vibrational energyV ) Eov + EV0; so, the tunnel
jumps occur in temperatures meeting the conditionCpT < Eov.
The problem of the absence of correlation functions of incoher-
ent tunneling at high temperatures has been discussed in the
literature.15,16,19-21

The proton transfer in a hydrogen bond is not the only motion
which governs the total spectral density function. The minimum
of protonT1F, which can be assigned to librations of the whole
dimer (Figure 1), is observed for 2,5-DNBA at high tempera-
tures. The correlation time characterizing this motion can be
defined as

whereElib is the activation energy of this motion andτ0
lib is the

pre-exponential factor.

Thus, the three stochastic processessclassical and quantum-
mechanical proton jumps in the hydrogen bond and librations
of the whole dimer between two equilibrium positionss
independently modulate the interaction Hamiltonian. The ex-
pression describing the spectral density function of the complex
motion consisting of the three motions is derived in this paper
and applied to analyze the proton and deuteronT1 and also
protonT1F temperature dependencies in 2,5-dinitrobenzoic acid.
Such an analysis cannot be performed in terms of the known
equations for the spectral density of proton transfer. It will be
shown that it is not possible to obtain an acceptable fit to the
T1F data by employing these known equations.

2. The Theory of Spin-Lattice Relaxation

In the case of proton spin-lattice relaxation, the average value
of all dipolar interactions has to be taken into account. Since
the whole molecules obey the Boltzmann distribution between
vibrational levels (a vibrational relaxation is much faster than
T1 relaxation), the relaxation rate is given by

whereN is the number of protons in a molecule;nV0 and nV1

are the Boltzmann fractions of molecules in the separate
vibrational levelsV0 andV1 associated with the average energies
EV0 andEV1 of the ground and first excited vibrational levels.
Because the population of molecules in the second excited
vibrational level is very low, it seems reasonable to take into
account only two vibrational levels [nV0 + nV1 ) 1, nV1/nV0 )
exp(-δEV01/RT), where δEV01 ) EV1 - EV0 is the energy
difference between the ground and first exited vibrational states].
Therefore, the values ofnV0 andnV1 are

and

In the weak-collision limit, the spin-lattice relaxation rates
in the laboratory and rotating frames for the standard type of
spin interactions, such as the direct dipole-dipole interaction
of homonuclear spin pairis, are given by23-25

Figure 1. A and B tautomers of carboxylic acid dimer and the
corresponding potential energy minima.V0 andV1 are local vibrational
states.
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and

The quadrupolar interaction of the deuteron spins can be
described in terms of the single-spin quadrupolar coupling
tensor. The largest tensor componentqcczz is normally aligned
parallel to the chemical bond. The spin-lattice relaxation of a
nuclear spin I with a quadrupole moment resulting from the
time-dependent fluctuations of the electric field gradient at the
nucleus can be expressed as26-28

whereVx ) V0 andVx ) V1; η is the asymmetry parameter.
The angular NMR frequency in the laboratory frame isωI, while
ω1 ) γIB1 is the frequency of the rotating magnetic field and
Jis

m(2ω1), Jis(qcc)
m (ωI), andJis(qcc)

m (2ωI) wherem ) 0, 1, and 2 are
the spectral density functions of the correlation functions of the
fluctuating part of the dipolar or quadrupolar Hamiltonian. These
random functions are

The quantityL(t) in eqs 9-11 equalsγiγsp Ris
-3(t), which is

the dipole coupling constant, orL(t) ) e2 qzz(t) Q/h, which is
the quadrupole coupling constant expressed in hertz. The polar
and azimuth anglesϑ(t) andæ(t) describe the orientation ofRis

or qzz in the laboratory frame with thez axis in the direction of
the external magnetic fieldB0. The parametersqzz, Ris, ϑ, and
æ are time-dependent.

The proton NMR relaxation monitors the dynamics of two
protons at a distanceRis, while the deuteron relaxation monitors
the dynamics of the X-D chemical bond. The sources of the
differences in the spectral densities forV0 andV1 levels are the
different potential barriers for the classical jumps [(EAB)V1 )
EAB - δEV01 and (EBA)V1 ) EAB - ∆ - δEV01 (Figure 1)] and
also different frequencies of the tunneling jumps [(1/τ0

tu)V1 ≈
1/30(τ0

tu)V0].8 As the spectral densitiesJis(qcc)
m (ω) depend on the

fluctuations of the dipolar or quadrupolar Hamiltonian, the
results presented in this paper imply the need to derive a formula
for the correlation function of a complex motion composed of
three components. Two components are the classical hopping
(jumps over the barrier) and incoherent tunneling (jumps through
the barrier) between two sites A and B of unequal energy (Figure
1). The third component describes the jumps over the barrier
of Ris or qzzbetween two equilibrium sites of equal energy. One
set of sites is distanced by theΘAB angle andEAB potential
barrier and the second one is distanced by theΘlib angle and
Elib activation energy.

When the method for the correlation function calculation
presented in ref 14 is applied, derivation of the formula for the
complex motion is easy:

where

and

where “a” is given by eq 2. The parametersτVx
ov, τVx

tu, andτlib are
the correlation times characterizing the separate motions.Sm )
4/5, 2/15, or 8/15 form ) 0, 1, and 2, respectively;L(A) and
L(B) are theL(t) values at different sites. Usually,qzz for
deuterons is parallel to the chemical bond5 and assumes the same
value at A and B sites [qzz(A) ) qzz(B)]. When considering the
proton relaxation, the possibility of a change in the internuclear
distance has to be taken into account. The dipolar coupling
constants areL(A) ) γiγspRis

-3(A) andL(B) ) γiγspRis
-3(B),

whereRis(A) andRis(B) are the proton-proton distances at the
A and B sites.

Spectral densitiesJm(ω) in spin-lattice relaxation theories
are Fourier transforms of the correlation functions of the
fluctuating functionsFm(t) of the dipole or quadrupole Hamil-
tonians:

Thus, the spectral density function of the complex motion
composed of the classical and tunneling jumps between the two
equilibrium positions A and B and the classical jumps between
two other equilibrium positions is

where

1

(T1
is)Vx

) 9
8 (µ0

4π)2
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F2(t) ) L(t) {sin2[ϑ(t)] exp[2iæ(t)]} (14)
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Sm
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(16)

C2 )
a

(a + 1)2
[L(A)2 + L(B)2 - L(A)L(B)(3 cos2 ΘAB - 1)]

(17)

Jm(ω) ) ∫-∞

+∞
〈Fm(t) Fm*( t + τ)〉 exp(-iωτ) dτ (18)
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and

WhenτVx
tu f ∞, eq 19 simplifies to

which is the theoretical value of spectral density for the complex
motion consisting of two classical motions between two sites
of potential energy minimums.29,30

WhenτVx
tu f ∞ andτlib f ∞, eq 19 simplifies to

which is the equation obtained by Nagaoka et al.18 as well as
Andrew and Latanowicz31 for the classical hopping in a double
potential.

3. Experiment

2,5-Dinitrobenzoic acid was purchased from Aldrich. By
repeated recrystallization in ethanol-OD, it was specifically
deuterated in the hydroxyl group. The deuteration was ap-
proximately 97%. Powder samples were used for measurements.
The samples were degassed under 10-5 Torr and sealed under
a vacuum in glass ampoules.

ProtonT1 values were measured on a Bruker SXP 4/100 pulse
spectrometer at 24.7 MHz by a conventional saturation recovery
technique with a saturation sequence of 15 90° pulses, each
followed by a 4 msdelay.

ProtonT1F values were measured with a 24.7 MHz Bruker
SXP 4/100 pulse spectrometer. The quantityT1F was determined
by locking the signal after a 90° pulse and observing the sub-
sequent signal intensity as a function of the field pulse duration.
The magnetic radiofrequency fieldB1 ) 9 G was applied.

DeuteriumT1 relaxation measurements were performed at a
Larmor frequency of 55.2 MHz. An aperiodic saturation pulse
sequence was employed to initially destroy thezmagnetization
Mz, and the subsequent buildup ofMz was monitored with a
90°x-t-90°y echo sequence. A measure ofMz was the height
of the echo.

The temperature of the specimen was kept constant automati-
cally during a measurement by an Oxford temperature controller
to an accuracy of 0.1 K.

4. Results and Discussion

A. Proton Relaxation. The experimental temperature de-
pendencies of protonsT1 (24.7 MHz,0) andT1F (B1 ) 9 G,4)
are given in Figure 2 together with that ofT1 at 55.2 MHz (O,
published previously).1 Fits of eq 6 together with those of eqs
19, 1, 3, and 5 and the known structural data forRis(A), Ris(B),
and the anglesΘAB to the experimentalT1 and T1F data are

represented in Figure 2 by solid lines. The crystal structure of
2,5-DNBA has been solved by Grabowski and Krygowski.22

The obtained best-fit parametersEAB, ∆, (τ0
ov)V0, (τ0

tu)V0, Elib,
τ0

lib, andΘlib are listed in Table 1. The best-fit parameters∆
and (τ0

tu)V0 were obtained fromT1 temperature dependencies,
while the best-fit parametersElib, τ0

lib, andΘlib were obtained
from T1F temperature dependence only. The valuesEAB and
(τ0

ov)V0 fit the experimental data ofT1F as well asT1. The
dashed lines in Figure 2 show the fits of eqs 6 and 23 to the
experimental data. Equations 19 and 23 differ by the taking
into consideration the tunneling motion. It is clearly visible that
low-temperature minimumT1F can be assigned to the classical
motion.

Thus, the possibility of determination of the correlation times
τVx

ov andτlib from the temperature dependence ofT1 depends not
on the temperature range but on the resonance frequency at
which the measurements were performed. The slopes ofT1F from
both sides of the minimum are higher than the slope ofT1 in
the same temperature regime. This indicates thatT1F is a result
of classical hopping, whileT1 is mainly a result of incoherent
tunneling at these temperatures. Therefore, it can be concluded
thatT1F in the low-temperature regime is governed by classical
motion, whileT1 in the same temperature regime is governed
by incoherent tunneling. Thus, theT1F relaxation time in the
rotating frame is a convenient experiment to detect the rate of
classical motion, 1/τVx

ov, at low temperatures.
The T1F minimum revealed by experimental points at the

highest temperatures (Figure 2), but below the melting point,
corresponds to the maximum of the function 2τlib/[1 +
(2ω1τlib)2]. The corresponding minimum ofT1 is a result of the
maximums of the functions 2τlib/[1 + (ωIτlib)2] and 2τlib/[1 +
(2ωIτlib)2]. Such a minimum is not reached in measurementsT1

(55.2 MHz) or T1 (24.7 MHz) below the melting point.
Therefore,T1F measurements only detect the librations of the
whole molecule between two equilibrium positions distanced
by the angleΘlib. The best fit estimated for the value ofΘlib is
30°.

The small discontinuities in the temperature dependencies in
Figure 2 follow from the fact of inserting eq 3 into eq 19. When
CpT > EAB, the correlation timeτVx

tu is eliminated from the
equations for the spectral density (eq 19). Therefore, spectral
density follows eq 23 above the characteristic temperatureTtun

whereCpTtun ) EAB. The potential barrier estimated from the

1

τVx
tulib

) 1

τVx
tu

+ 1

τlib
(21)

1

τVx
ovtulib

) 1

τVx
ov

+ 1

τVx
tu

+ 1

tlib
(22)
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m (ω) )

Sm[C1
3
4

sin2 Θlib
2τlib

1 + (ωτlib)2
+ C2(1 - 3

4
sin2 Θlib) ×

2tVx
ov

1 + (ωτVx
ov)2

+ C2
3
4

sin2 Θlib

2τVx
ovlib

1 + (ωτVx
ovlib)2] (23)
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m (ω) ) SmC2

2τVx
ov

1 + (ωτVx
ov)2

(24)

Figure 2. Temperature dependencies of the protonT1 (O ) 55.2 MHz)
and (0 ) 24.7 MHz) andT1F [(∆ - (B1 ) 9 G, ωI ) 2π × 2.47
MHz)]) for 2,5-DNBA. Solid lines represent the best fit of eqs 6 and
19 together with eqs 1, 3, and 5 to the experimental data. Dotted lines
represent the best fit of experimental data when eq 23 is applied. The
arrow shows the temperature of cessation of proton tunneling jumps
(Ttun ) 46.5 K).
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high-temperature side of the temperature dependence ofT1 is
3.35 kJ/mol. The excellent fit of eqs 6 and 19 (Figure 2) to the
experimental data is obtained when the temperatureTtun is
assumed to be approximately 46.5 K. This value is shown by
the arrow in Figure 2. Therefore, the value ofCp is 72 J/mol/K.
The value of Cp in solids is temperature-dependent. The
knowledge of the accuracy ofCp determination is important in
the temperature just below theTtun temperature. For small values
of T (CpT , Eov), the valuesτtu (eq 3) are mainly determined
by the value ofEov:

Therefore,Cp ) 72 J/mol/K is the value of the molar heat
capacity of 2,5-DNBA just near the temperature 46.5 K.

It is clear that the values ofnV1Jm(ω,τV1
ov,tV1

tu ) are relatively
small for proton transfer because there is virtually no difference
between the calculated spin-lattice relaxation times according
to eq 6 and the equation

B. Deuteron Relaxation.The experimental deuteron relax-
ation timeT1 (55.2 MHz) as a function of the temperature for
a powdered sample of 2,5-DNBA is presented in Figure 3
together with the theoretical best-fit plots. The valueL(A) )
L(B) ) qcc) 175 kHz, used in these fits, was estimated from
the expression32

where r is the O‚‚‚O distance in angstroms, estimated to be
2.63 Å.22 The asymmetry parameterη has been assumed to be
equal to zero. The angleθAB between the orientations of the
principal component of the electric field gradient tensorqzz,

assumed to be along the O-D chemical bond, was estimated
from the known structure to be 7°.22

We performed two kinds of fits. One of them (solid line)
weighted in the deuteron population average value of deuteron
T1, that is,

where 1/(T1
deut)Vx is given by eqs 11 and 19 and the other

(dotted line) with the first term of eq 28. The fit presented by
the dotted line deviates noticeably from the experimental points,
while the solid lines fit the experimental data satisfactory. The
difference between the dotted and solid lines reveals the
temperature regime where the proton transfer of molecules being
in the first excited vibrational state contributes to the deuteron
relaxation of 2,5-DNBA. Thus, a contribution to NMR spin-
lattice relaxation due to proton transfer in excited vibrational
states is negligible for fast proton transfer but is significant for
slow deuteron transfer.

The best-fit parameters are listed in Table 1. As a result of
the isotope effect, deuteron-transfer parameters differ from those
of protons. Since a deuteron is heavier than a proton, it moves
slower in the hydrogen bond. The potential barrierEAB for the
interconversion of the AT B tautomers is higher for deuterons
than for protons.

5. Correlation Times

The best-fit parametersEAB, ∆, (τ0
ov)V0, (τ0

tu)V0, Elib, andτ0
lib

given in Table 1 can be used to calculate the theoretical
temperature dependence of the proton and deuteron correlation
times. The temperature dependencies of the correlation times
(τov)V0, τlib, and (τtu)V0 obtained from fits to the dependencies
of T1 (55.2 and 24.7 MHz) andT1F (B1 ) 9G) are shown in
Figure 4 as solid lines. The points show the values of (τov)V0

and (τtu)V0 obtained from the particular experimental data [∇
and ∆ ) T1 (24.7 MHz), O and 0 ) T1 (55.2 MHz), and×
and+ ) T1F (B1 ) 9G)]. The proton correlation times are given
in Figure 4a, while the deuteron correlation times are given in
Figure 4b. The plot of ln[(τtu)V0] as a function of (1000/T) reveals
the temperatureTtun shown in Figure 4 by the arrow. It is visible
that at this temperature the value of correlation time (τtu)V0 is
comparable to the value of (τov)V0. The plot of ln[(τtu)V0] as a
function of (1000/T) deviates from the almost linear dependence
at temperatures belowTtun. This effect follows from the specific
temperature dependence ofτtu, in accordance with eq 3. The
temperatureTtun is the highest temperature for (τtu)V0 and (τtu)V1

temperature dependence.
As predicted by eqs 1, 3, and 5, the correlation times of the

classical motionsτov andτlib exist in a wide temperature range
while the tunneling correlation timeτtu exists only in low
temperatures up to the temperatureTtun ) Eov/Cp. Below the
Ttun temperature, the thermal energy of molecules (CpT) is lower
than the activation energy. This temperature seems to be also
the point where correlation times of tunneling and classical
motion are of comparable value.

TABLE 1: The Best-Fit Parameters Obtained from the Proton T1 and T1G and Deuteron T1 (Deuterated Hydroxyl Group) of
2,5-DNBA

EAB

kJ/mol
(∆)

kJ/mol
Elib

kJ/mol
(τ0

ov)V0

s
(τ0

tu)V0

s
τ0

lib

s
Θlib

deg

proton 3.3 0.63 4.2 5.9× 10-12 3 × 10-9 2 × 10-6 30
deuteron 6.3 0.42 3.3× 10-11 9 × 10-8

τtu ≈ τ0
tu exp(BxEov) (25)

1

(T1)
)

1

N
∑
i)1

N

∑
s)1

N

nV0

1

(T1
is)V0

(26)

Figure 3. Experimental deuteronT1 (55.2 MHz) for 2,5-DNBA with
deuterated hydroxyl group as a function of the temperature. Solid lines
represent the best fit of eqs 28 and 19 together with eqs 1, 3, and 5 to
the data. The dotted lines represent the best fit when the first term in
eq 28 is applied. The arrow shows the temperature of cessation of
deuteron tunneling jumps (Ttun ) 87.3 K).

qcc) (442.7- 4882r -3) kHz (27)

1

(T1
deut)

) nV0
1

(T1
deut)V0

+ nV1
1

(T1
deut)V1

(28)
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6. Comparison to Other Relaxation Theories

Instead of the spectral density given by eq 19, the following
equation has been used in the literature as an approximation of
the total spectral density due to classical motion and incoherent
tunneling:1-13

The correlation timeτtotal as a function of the temperature is
usually approximated by a biexponential dependence6 whose
first term is the Arrhenius-like dependence, and the second
describes the deviations from the Arrhenius law. In a number
of papers, the second term in the formula forttotal is as shown
below

whereτov andτtu are determined by the Arrhenius and Skinner-
Trommsdorff2 dependencies.

Differences between two models (eqs 19 and 29) are
noticeable in the calculations of spin-lattice relaxation rates
for high and low resonance frequencies.33 In fact, it was
impossible to obtain an acceptable fit to both protonT1 (ωI )

2π × 55.2 MHz,ωI ) 2π × 24.7 MHz) andT1F (B1 ) 9 G),
obtained for 2,5-DNBA data, by employing eq 29 (Figure 5).

7. Conclusions

The correlation time for tunneling jumps can be described
explicitly by a formula obtained directly from Schro¨dinger’s
equation. The low temperature of the beginning of the tunneling
motion,Ttun, predicted by this equation, is approximately 46.5
K for proton transfer and 87.3 K for deuteron transfer in 2,5-
DNBA dimer. These temperatures point to the temperatures
where the thermal energyCpT equals the activation energy.
BelowTtun, the temperature begins the tunnel pathway for proton
transfer.

The equations derived in this paper for the total spectral
density of complex motion (classical and tunneling jumps of a
hydrogen-bonded proton, two-site hopping of the whole dimer)
fit well the T1 andT1F experimental data.

Employing the model with a single correlation time for proton
transfer is not possible to fit both theT1F andT1 experimental
data.
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